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Abstract  —  The problem of determining the two different 

shape description of a perfectly conducting cylinder buried 
in a half-space by the genetic algorithm is investigated. 
Assume that a cylinder of unknown shape is buried in one 
half-space and scatters the field incident from another half-
space where the scattered field is measured. Based on the 
boundary condition and the measured scattered field, a set of 
nonlinear integral equations is derived and the imaging 
problem is reformulated into an optimization problem. As a 
result, the shape of the scatterer which is described by using 
cubic-spline can be reconstructed. In such a case, fourier 
series expansion will fail. 

Index Terms  —  Inverse Problem, Cubic-spline, Fourier 
series.

I. INTRODUCTION

Due to large domain of applications such as non-
destructive problem, geophysical prospecting and 
determination of underground tunnels and pipelines, etc, 
the inverse scattering problems related to the buried 
bodies has a particular importance in the scattering theory. 
In the past 20 years, many rigorous methods have been 
developed to solve the exact equations. However, inverse 
problems of this type are difficult to solve because they 
are illposed and nonlinear. As a result, many inverse 
problems are reformulated into optimization ones and then 
numerically solved by iterative methods such as Newton- 
Kantorovitch method [1], [2]. Recently, researchers have 
applied GA together with electromagnetic solver to attack 
the inverse scattering problem mainly in two ways. One is 
surface reconstruction approach, Chiu [3], [4] first applied 
the GA for the inversion of a perfectly conducing cylinder 
with the geometry described by a Fourier series (surface 
reconstruction approach), the other is volume 
reconstruction approach [5]. The 2-D perfectly conducting 
cylinders are denoted by local shape functions )(F
with respect to their local origins which can be continuous 
or discrete. However, to the best of our knowledge, there 
are still no numerical results which compared the cubic-
spline and Fourier-series shape description with the 
genetic algorithm for the buried conducting scatterers. In 
this paper, we present a computational method based on 
the genetic algorithm to recover the shape of a buried 

cylinder. In Section II, a theoretical formulation for the 
inverse scattering and the general principles of genetic 
algorithms are described. Numerical results for 
reconstructing objects of different shapes are given in 
Section III. Finally, some conclusions are drawn in 
Section IV. 

II. THEORETICAL FORMULATION

Let us consider a perfectly conducting cylinder 
buried in a lossy homogeneous half-space, as shown in 
Fig 1. Media in regions 1 and 2 are characterized by 
permittivity and conductivity ),( 11  and ),( 22

respectively. The metallic cylinder with cross section 
described in polar coordinates in xy plane by the equation 

)(F  is illuminated by transverse magnetic (TM) 
waves. We assume that time dependence of the field is 
harmonic with the factor exp( tj ). Let incE  denote the 

incident field from region 1 with incident angle 1 . A 
reflected wave (for ay ) and a transmitted wave (for 

ay ).
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For a TM incident wave, the scattered field can be 
expressed as 

               
2

0
')'()'),'(;,(),( dJFyxGyxEs   (1) 

where 

)()(')()( 22
0 sJFFjJ

Electrical Engineering Department, Tamkang University 
Tamsui, Taiwan, R.O.C. 

0-7803-9342-2/05/$20.00 © 2005 IEEE 0-7803-9342-2/05/$20.00 © 2005 IEEE 158



ayyxyxGyxyxGyxyxG
ayyxyxG

yxyxG
sf ),',';,()',';,()',';,(

,)',';,(
)',';,(

2

1  (2) 

where 

deeejyxyxG xxjayjayj )'()'()(

21
1

21

2
1)',';,(     (2a) 

])'()'([
4

)',';,( 22
2

)2(
0 yyxxkHjyxyxGf     (2b) 

deejyxyxG xxjyayj
s

)'()'2(

12

12

2

2)(
22

1)',';,(     (2c) 

222
ii k , 2,1i , 0)Im( i

, ay'
Here )(sJ  is the induced surface current density which 
is proportional to the normal derivative of electric field on 

the conductor surface. )2(
0H  is the Hankel function of the 

second kind of order zero. The boundary condition at the 
surface of the scatterer given by [5] then yield an integral 
equation for )(J :

2
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For the direct scattering problem, the scattered field, 

sE , is calculated by assuming that the shape and the 
conductivity of the object are known. This can be 
achieved by first solving J  in (3) and calculating  sE  in 
(1). 

Let us consider the following inverse problem, given 
the scattered electric field 

sE  measured outside the 
scatterer, and determine the shape )(F  of the object.  
(A) Using Fourier-series to describe the shape: 

Assume the approximate center of the scatterer, 
which in fact can be any point inside the scatterer, is 
known. Then the shape function )(F  can be expanded 
as:
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where 
nB , and 

nC ,are real coefficients to be determined, 
and 1N  is the number of expanded terms.  
(B) Using Cubic-spline to describe the shape: 

The geometry of the cubic-spline is shown in Fig. 2. 
First, we separate the boundary of the shape with N
pieces and we have 1N  separated points. We denote 
the separated points by polarized-coordinate 
expression 00, , 11 ,  ,…, NN ,  , 

where 3600 i ,i=0…N, 00 , 360N

and. N...10 i  is the distance from point 

ii ,  to the center point 00, yx

Fig. 1 Geometry of the problem in (x,y) plane 

Fig. 2  Geometry of the cubic-spline 

The genetic algorithm is used to minimize the 
following cost function: 
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where TX  is the total number of measured points. 

)(exp rEs  and )(rEcal
s

 are the measured scattered field and 
the calculated scattered field respectively. The 
minimization of 2'F  can, to a certain extent, be 

interpreted as the smoothness requirement for the 
boundary of F . The basic GA for which a flowchart 
is shown in Fig. 3 starts with a large population containing 
a total of X candidates. Each candidate is described by a 
chromosome. Then the initial population can simply be 
created by taking X random chromosomes. Finally, the 
GA iteratively generates a new population which is 
derived from the previous population through the 
application of the reproduction, crossover, and mutation 
operators.  

Fig. 3 The flowchart of GA

III. NUMERICAL RESULT

Let us consider a perfectly conducting cylinder 
buried in a lossless half-space ( 021 ). The 
permittivities in region 1 and region 2 are characterized by 

01  and 02 56.2  respectively. A TM 

polarization plane wave of unit amplitude is incident from 
region 1 upon the object in region 2 as shown in Fig. 1. 
The frequency of the incident wave is chosen to be 3GHz, 
of which the wavelength 0  in free space is 0.1m. The 

object is buried at a depth a 0  and the scattered fields 
are measured on a probing line along the interface 
between region 1 and region 2. Our purpose is using the 
Fourier-series and cubic-spline shape expressions to 
reconstruct the shape and comparing which is better in the 
inverse problem. The object is illuminated by three 
incident waves from different directions, while 20 
measurement points at equal spacing are used along the 
interface ay  for each incident angle. There are 60 
measurement points in each simulation. The measurement 
is taken from x =0 to 0.2m for incident angle 

1 = 60 , from x =-0.1 to 0.1m for incident angle 

1 = 0 , and from x =-0.2 to 0m for incident angle 

1 = 60 . To save computing time, the number of 
unknowns is set to be 7, and the population size is chosen 
as 300. The binary string length of the unknown 
coefficient, 

nB  ( nC , and 
i
), is set to 20 bit (i.e., L=20). 

The search range for the unknown coefficient of the shape 
function is chosen to be from 0 to 0.1. The extreme values 
of the coefficients of the shape function and can be 
determined by some priori knowledge of the objects. Here, 
the prior knowledge means that we can get the 
approximate position and the size of the buried cylinder 
by first using tomography technique, and then get the 
exact solution by the genetic algorithm. The crossover 
probability cp  and mutation probability 

mp  are set to be 
0.8 and 0.1, respectively.  

In the first example, the shape function is given by 
3cos015.003.0F m and we use Fourier-

series and cubic-spline expressions to recover it. The 
reconstructed shape function for the best population 
member (chromosome) is plotted in Fig. 4.  From Fig. 4, it 
is clear that reconstruction of the shape function is quite 
good for both Fourier-series and cubic-spline expressions 

In the second example, we selected cubic-spline to 
describe the shape 02.01 m, 302.02 m, 

302.03 m, 02.04 m, 302.05 m, 

302.06 m. We can see that the 7-terms Fourier-
series expression can not recover the shape. The purpose 
of this example is to show that cubic-spline method is able 
to reconstruct a scatter while the Fourier-series fails. The 
shape results are shown in Fig. 5. 
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Fig. 4 Shape function for example 1. The star curve represents 
the exact shape by the Fourier-series, while the curve of 
short imaginary line is calculated shape by the Fourier-
series and the curve of long imaginary line represents 
calculated shape by the cubic-spline in final result

Fig. 5 Shape function for example 2. The star curve represents 
the exact shape by the Fourier-series, while the curve of 
short imaginary line is calculated shape by the Fourier-
series and the curve of long imaginary line represents 
calculated shape by the cubic-spline in final result.

III. CONCLUSION

We have presented a study of applying the genetic 
algorithm to reconstruct the shape of a buried metallic 
object through the measured of scattered E  fields. Based 
on the boundary condition and the measured scattered 
fields, we have derived a set of nonlinear integral 
equations and reformulated the imaging problem into an 
optimization one. The contours of the cylinders are 
denoted by cubic-spline local shape functions in local 
polar coordinate instead of trigonometric series local 
functions to guarantee the nonnegative definiteness. 
Experiment results show that the variable searching ability 
of GA has it’s limitation, and Fourier-series expression 

can not recover the arbitrary shape in finite terms. In our 
numerical results, it is shown that using cubic-spline 
expand to describe the shape in the half-space inverse 
problem is more suitable than Fourier-series expression. 
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